
Geostatistical data

Quantity measured at a location

Assumed characteristic of that location, not a large area
Examples:
elevation, annual rainfall, surface soil pH, O2 concentration at 3m

Notation:
s: location, a vector value.

Usually s = (x , y) in some coordinate frame (e.g., longlat or UTM)
Written as a vector because details of 1D (beach, line), 2D (earth
surface), 3D (ocean, soil, atmosphere) not important

Z (s): the characteristic at location s.

Geostatistical data

Z (s) exists everywhere within boundary of study area
Generally, no sharp changes (jumps) in Z (s)
Z (s1) probably different from Z (s2), but transition is smooth
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Many possible goals

Predict Z (s) at unmeasured locations

Describe spatial pattern in Z (s)

How similar is Z (s) to neighboring values?
How does that change with distance to neighbor?

Model relationship between Z (s) and covariates
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Prediction

Could be done to fill in a grid so can draw map or use image/contour
plot

Or, done because you need predictions at unmeasured points

3

1

2

1

3

X

What is Z at the location marked by X?
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Prediction

One possibility: simple average of Z over entire region

Very common in non-spatial contexts

1st law of geography (Tobler): everything is related to everything else
more closely related to nearby things

This principle is very important if there is a spatial trend (variation
across the region) or some form of spatial pattern.

simple average ignores spatial trend and pattern
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Prediction

What if had a bit more data:
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Overall average for region clearly inappropriate

Consider some form of local average
We will discuss 3 methods:

Inverse distance weighting
Spatial trend model
Kriging: we’ll spend most time / effort on this
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Inverse distance weighting

Concept:

Prediction an average that emphasizes nearby values
Done by weighting all observations
Higher weight to nearby observations

Notation: s i is location of i ’th observation
dij is distance between location i and location j
Z (s i ) is value of Z at location s i
Ẑ (s i ) is prediction of Z at location s i

Ẑ (s j) =
Σiwij Z (s i )

Σiwij
,where

wij =
1

da
ij
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Inverse distance weighting

a is an arbitrary parameter, commonly 1 or 2

a = 0 gives you the simple average over entire region (all weights = 1)
larger values → “more local” estimate, because emphasize shorter
distances
if dij = 0, i.e. predicting at an observed location, use observed value

Characteristics:

wij always ≥ 0 and wij/sum always ≤ 1
Sometimes set small values of wij to 0

Ẑ (s j) always within range of observed values
Some like this; other’s don’t.

Problem: have to choose a. Some approaches:

Ad hoc (you like the resulting picture),
or tradition (your field always uses 2 or 1.5 or ??)

demonstrate role of a by comparing results for a = 2 and a = 1
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Swiss rainfall data
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Swiss rain, IDW, power=2

Swiss rainfall, IDW, power=2
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Swiss rain, IDW, power=1

Swiss rainfall, IDW, power=1
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Swiss rain, IDW, power=0

Swiss rainfall, IDW, power=0
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Swiss rain, IDW, difference

Swiss rainfall, IDW, difference
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Swiss rain, IDW, comparison
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Spatial trend surface

Assume some function of X and Y coordinates fits the data

often a low order polynomial (linear or quadratic)

Z (s i ) = β0 + β1Xi + β2Yi + εi , or

Z (s i ) = β0 + β1Xi + β2Yi + β3X
2
i + β4Y

2
i + β5XiYi + εi ,

only used for predicting Ẑ (s i )
not doing any test or inference, so don’t worry about correlation in ε’s

accounting for correlation, i.e. using GLS, will give better estimates of
β̂’s.

Potential advantages over inverse distance weighting:

Can estimate Var ε
Can construct prediction intervals for Ẑ (s i ):

Ẑ (s i )± T1−α/2

√
s2 + Var Ẑ (s i )
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Spatial trend surface

Confidence and Prediction intervals

Reminder: can interpret a fitted regression line two ways
Predict average Y at some new X

Uncertainty only in regr. coefficients (“the line”)
If I collected a second set of n obs, how similar is Ŷ ?
Decreases as n increases
se of a mean, confidence interval for Ŷ

Predict a new observation at some new X

Uncertainty in both the line and obs around the line
Before sampling a new obs, how accurate is prediction?
Usually, very similar to s (rMSE), never smaller
sd of a predicted observation, prediction interval for Ŷ
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Confidence interval: Swiss rain
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Prediction interval: Swiss rain
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Swiss rain, linear TS

Swiss rainfall, linear trend surface
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Swiss rain, quadratic TS

Swiss rainfall, quadratic trend surface
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Splines: more flexible regression functions

Concepts only. Details require a lot of intricate math and stat theory

Consider response Y and one predictor X

Sometimes a simple model is great
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Splines: more flexible regression functions

And sometimes not
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Splines: more flexible regression functions

How to model relationship between Y and X, especially to predict?

If subject-matter-based model, use it!
Fit a higher order polynomial (quadratic, cubic)
Non-parametric regression: smooth the data

Various NP regression methods. Focus on smoothing splines

Concept: put together many models for small pieces of the data

Need to choose number of small pieces

fewer pieces: smoother curve, closer to linear
more pieces: wigglier curve, closer to data
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Spline fits
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Spline fits

How to choose how smooth/wiggly?

not easy

Too smooth is obviously bad

Extemely wiggly effectively connects the dots

also bad - predictions of new obs. are inaccurate
overfitting the observed data
treating “noise” as signal.

One common solution: cross validation

leave out an obs, fit a model, predict left obs.
put back, leave out next obs, · · ·
right choice is the value that makes good preds. of all the left-out obs

splines require more data than when you know the model
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Spline fits
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Spline fits

Two ways to extend to spatial data

Additive splines

spline fn of X coordinate: describes pattern in X
spline fn of Y coordinate: describes pattern in Y
Add them together

depends on axis directions. Assumes pattern along the axes
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Swiss rainfall data
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Swiss rain, Spline fit: s(x) + s(y)

Additive spline
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Spline fits

Two ways to extend to spatial data

thin plate spline

think of a sheet of paper or thin sheet of metal
drape over the data, allow to wiggle
models pattern in all directions simultaneously
not dependent on axis directions
requires much more data than additive splines
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Swiss rain, Spline fit: s(x,y)

2D thin plate spline
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Models for data

IDW: no model

trend surface: Z(s) = β0 + f (s) + ε

all the spatial “action” is in f (s)
Have to choose form of f (s)

β1 X + β2 Y
β1 X + β2 Y + β3 X

2 + β4 Y
2 + β5 XY

s(X ) + s(Y )
s(X , Y )

given form of model, can easily estimate unknown parameters,
e.g., β1, β2, or the parameters in s().

kriging: simple, ordinary Z(s) = β0 + ε

ε are correlated. nearby observations more so.
all the spatial “action” is in the correlations

universal kriging: Z(s) = β0 + f (s) + ε, ε correlated
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Kriging

Original motivation:

underground gold mining. gold content varies along a rock face
want to predict where highest gold content
and / or average gold content in an area
sample a small fraction of the rock face
prediction problem: predict ˆZ(s) at new locations given data

Danie Krige: treat Z(s) as spatially correlated collection of r.v.’s

derive optimal predictor

original paper: 1951, So. African mining journal

procedure now known as kriging
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Kriging

Simplest setup of the problem:
Z(s) = β0 + ε, ε ∼ N(0

¯
,Σ), β0, Σ known

In words:

observations are spatially correlated r.v.’s
mean β0 known
covariances (or correlations) between all pairs of obs. Σ, known

Can derive: Kriging is the optimal linear predictor

No other linear combination of the observations has a smaller variance

predictions are weighted average of the obs.

weights are functions of the spatial pattern

When little spatial pattern, → regional average
When strong spatial pattern, → local average

weights can be > 1 or < 0

predictions can exceed range of observations
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Kriging notation

Use vectors and matrices to describe the data Z(s), their means µ,
and their variance-covariance matrix, Σ.

Z(s) =


Z1

Z2
...
Zn

 , µ =


µ1
µ2
...
µn

 , Σ =


σ21 σ12 · · · σ1n
σ12 σ22 · · · σ2n

...
...

...
...

σ1n σ2n · · · σ2n


P(s0) is a function that predicts Z (s0)
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Kriging as making a good prediction

What should we choose for P(s0)?

Want a “good” prediction. Need to measure how good or how bad.

In general, define a loss function,L(), that tells us how to measure
good/bad.

Kriging: use squared error loss

L (Z (s0),P(s0)) = (Z (s0)− P(s0))2

P(s0) depends on the data, so L() is a random variable

so define a good predictor as one that minimizes E L()

That predictor is E Z (s0) | Z(s)
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Simple Kriging

Kriging model: Z(s) = µ(s) + ε(s)
where ε(s) are correlated (spatial pattern)

µ(s) is known, initially assume Σ is known

can derive:

P(s0) = µ(s0) + σ
′
Σ−1 (Z(s)− µ(s))

,

Derivation done in S&G, p. 223
σ is vector of covariances: Cov (Z (s0),Z(s))
Σ is the Var-Cov matrix of the observations

Least Squares regression: same loss function

Used to writing Ŷi = β̂0 + β̂1Xi

Algebra: same as Ŷi = Ȳ + σxy (σ2
X )−1(Xi − X̄ )
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Simple Kriging

This is the best predictor if Z(s) is Gaussian

best linear predictor if Z(s) is not Gaussian

Can also estimate prediction variance

σ2(s0) = σ2 − σ′Σ−1σ

This is the variance in the prediction conditional on (i.e., given)
observed values

Looks a bit unusual: usually add variances

σ
′
Σ−1σ large when prediction loc. is highly corr. with nearby locs

Reduces uncertainty in the prediction
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Simple Kriging

10
11

9 12
11

1

2

0
1

3
6

5

10

7

● 10
11

9 12
11

1

2

0
1

3
6

5

10

7●

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 3 Spring 2020 38 / 58

Simple Kriging: example

Understanding the prediction in a simple situation

Our population: constant mean.
Our data: not same value because of random variation
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Simple Kriging: example

The prediction is:

P(s0) = µ+ σ
′
Σ−1 (Z(s)− µ)

This is a weighted average of the deviations from the mean, µ

P(s0) = µ+ w (Z(s)− µ)

where the weights, w , depend on the correlations: w = σ
′
Σ−1

Can rewrite as a weighted average of n Z (s) values and the mean, µ

P(s0) = wZ(s) + (1− Σw)µ

look at those weights for predictions at two observations:

blue location: close to measured locations
red location: distant from all measured locations
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Simple Kriging: example
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Ordinary Kriging

The problem with simple kriging is that µ(s0) usually not known

Ordinary Kriging: estimate µ̂(s0)

slightly different statistical properties

no best linear predictor
but O.K. is best linear unbiased predictor

P(s0) = µ̂(s0) + σ
′
Σ−1 (Z(s)− µ̂)

, where µ̂(s0) is estimated by generalized least squares, GLS

For Y = Xβ + ε, OLS: β̂ = (X
′
X )−1X

′
Y

In general, GLS: β̂ = (X
′
Σ−1X )−1X

′
Σ−1Y

To estimate µ̂, µ̂ = (1
′
Σ−11)−11

′
Σ−1Z(s)

Consequence of GLS is less weight on obs. correl. with others

Picture on next slide
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Useful insight: σ
′
Σ−1 is a row vector, so

P(s0) = µ̂(s0) + λ (Z(s)− µ̂)

values in λ depend on covariance btwn obs. values and covariance
between prediction location and obs. values

high for obs. close to prediction location

values in λ may be negative, when obs. are “shadowed”

Picture on next slide.

Prediction variance:

σ2(s0) = σ2 − σ′Σ−1σ +
(1− 1

′
Σ−1σ)2

1
′
Σ−11

S.K. prediction variance + addn. variance because est. µ.
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Swiss rainfall

Kriging predictions
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Swiss rainfall

Kriging, shorter range correlation
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Swiss rainfall

Kriging, less spatial dependence
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Swiss rainfall

Kriging, small spatial dependence
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Swiss rainfall

Kriging, almost no spatial dependence
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Universal Kriging

generalize O.K. to any regression model for local mean

model: Z(s) = X (s)β + ε(s)

i.e. trend + random variation

No unique decomposition
Generally consider trend as fixed, repeatable, pattern
and random variation to be non-repeatable pattern

Measure Z at 50 spatial locations. What is the sample size?
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Universal Kriging

generalize O.K. to any regression model

model: Z(s) = X (s)β + ε(s)

i.e. trend + random variation

No unique decomposition
Generally consider trend as fixed, repeatable, pattern
and random variation to be non-repeatable pattern

Measure Z at 50 spatial locations. Q: What is the sample size?

A: ONE. You have one realization of that spatial pattern

Makes it very difficult to distinguish fixed and random components

Operationally:

trend is the variability that can be predicted by X (s)
random variation is that which can not

Choice of X (s) is really important!
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Universal Kriging

notice that spatial variation accounts for lack of fit to trend model

Two competing explanations
Defer discussion until we talk about spatial linear models

Should be able to anticipate the predictor:

P(s0) = X (s)β̂GLS + λ
(
Z(s)− X (s)β̂GLS

)
and the prediction variance:

σ2(s0) = σ2 − σ′Σ−1σ + term for Var X (s)β̂

the term for Var X (s)β̂ is complicated, not too informative

β̂GLS = (X (s)
′
Σ−1X (s))−1X (s)

′
Σ−1Z(s)
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Comparison of spatial prediction methods

Inverse distance weighting

more weight to nearby locs
wts relative to other nearby locs
if no other nearby locs, will still average the more distant locs
no easy way to estimate uncertainty in prediction

Trend surfaces

depend on specified model form
model is a global model
splines based on global est of smoothing param.

although there are local extensions

estimate doesn’t depend on number of nearby locs
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Comparison of spatial prediction methods

Kriging:

based on correlations among observations
estimated from global properties
big advantage: estimate depends on number of nearby locs

nearby points: prediction more like the local ave.
no nearby points: prediction more like the global ave.

and data determines how smooth
theory: best predictor

my experience: not compelling because assumptions never met
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